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SUMMARY 

Thf? therm(;dynarrjc and kinetic behav1our of the minor co~;por.ents o! 
the spent fuel matrix has been theoretica:ly and experimenta:ly 
investigated. Two d:~ferer.t situations ~ave been stud:ed: Part l, 
the near field ~cenario, where the release and migration cf the 
rr.inor corr.ponents is dependent on the so:'.lbility be::av1our c! 
uo2(s); Part II, the far field, where the solubility and transpcr: 
of the radior.'.lclides is related to the ma;or geoche~ica: processes 
occ'.lrring. 

l<EY'WCRDS: cc-preciFi ta:ion/co-d~sso::.:::or., s~er.t nuclear f;.;e:, 
radion:.:c:ide solub:l:ty. 
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PART I: RADIONUCLIDE CO-PRECIPITATION IN THE NEAR FIELD 

Introduction 

A first estimate of the release and transport ?f radionuclid .. ·s 
f.rom spent nuclear fuel in contact with groundwater is genera:l~: 
made by using thermodynaznic models. The collection a::d critical 
evaluation of the necessary the~~yn~~lC data requires much work. 
Solubility limits ar@ often used as radionuclide St"lrce terms ir. 
the general sec~rity analysis and most of the solubility data used 
in these exercises relates to pur~. solid phases. 

Spent nuclear fuel can .be coosidered as a multicomponent so:ic 
solutior. of varying homogeneity, dependioq on the conside:-ed 
radionuclide. It is now well established that. the release o! 
uranium, U·.e major componen~ of uo2 spent fuel. is so!ubili.ty 
limited [ 1]. It is reasonable to expect that the dissolution of 
the minor compone:1ts will be influenced by the release and cis­
sol~t~o:: of uraniwm. Cor.te~~ently, the thermodyn&~ic and kinetic 
behavio~r of these c~ponents c6nnot be modelled only by using the 
data for the p~re individual phases. 

The solubility behavi~ur of uo2(s) depends on the recox potentie: 
of the aq'.leous medium in ce>nt.act with th• fuel. Hence, t.,.o dlf­
ferer:~ situations shou~.d be studied. In the first case a prelimi­
nary solubiliz5tion of the spent nuclear ft•el caused by oxidat ior. 
in the near field, te.g. due to radiolysis), is followed by a re­
precipita~ion in the far field when reducing conditions are res­
tored. In the second case, co-dissolu•io~ of the minor component 
rt1dionuclides may occur in relation to the dissolution of uo2 
under reducing con~itions. In both cases, the solubility of these 
radionuclides will be ~ffected by the behaviour of uo2 . The syste~ 
is no lonqe. dependent only on tt.e thermodynamic and kinetic 
properties of the various individual phues for the different 
radionuclid~s. but un the distri" .. :i"'" of the components in the 
&?lid phase, •·9· the formation of solid solutions. 

The attachmer:t of a certain metal ion to a host solid phase n:ay 
occur J.n several forms, from adsc•rption of the ion at the sur!ace 
of the solid to true ideal solid solutions, where the foce.'-.gn 
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metal ion is regularly placed in the host lattice. There is a 
sequential transition from surface co-precicit~tion to idea: so:~c 
solution formation through these three processes: 

a) Surface co-precipitatio~ 
b) Lattice dlffusion 
c) Solid solution 

At room temperature, diffusion in a solid matrix is generally very 
~low and the first process, surface co-precipitation, is the o~e 
expected to occur. In this case, there is no major structural 
arrange~ent and the radionuclide distribution equilibria i~ 

established between the solid surface and the solution. However, 
the initial source (U02 spent fuel), may be considerec as an ~dea: 
solid soll<tion tor most of its components. 

All these phenomena can be included under the term co-precipita­
tion. Co-precipitation has been defined as "the conta~ir.atic~ o! a 
precipitate by substances that are normally so2.uble under tt.e 
conditions of tt:e precipitation [2)". This concept is lir::itec 
since there are sorre cases which cannot be explair.~d by tt-.:.s 
definition. Therefore, Gon!on [3) rede!int:d co-precipitatio:-: as 
"the precipitation of a compound in cor.junction wlth one or m~re 
components". We will use the concept co-precipitation in tt::s 
sense. Four types of co-precipitation have been characterized: 

a) Isomorphous rr..ixed crystal !ormation 
a) Anomalous mixed crysta: formation 
c) Adsorption 
d) Occlusi• 

where the first two cases are different degrees of so:id so:~t:cr.s 
[3]. 

The constituents of isomorphous mixed crystals t:ave Sl~:~ar 

chemical and crystallographic properties. In the case of ano:r.a:o·.s 
rr.ixed crystal formation, the characteristics are the sa':'le as ir. 
the former case, but •. heir formation cannot be explained on t::e 
same besis. Adsorption can be cor:sidered to some extert, as 
anoMalous mixed crystal fo~~tion at tne surface of the precip:­
tate. The term occlusion is usually applied for the case where 
adsorbe-'~ species on crystal planes are subsequently covered with 
~ther crystal layers. 

Co-precipitation is a wel: known chemic:lll phenorner:on. It has beer. 
extensively applied in analytical chemistry for the separation of 
trace ele1nents [3,4]. Also in radioar:alytical applications, 
particularly in enrichment processes [ 5 ,& ] , and for mixed oxide 
fuel production [7,8,9]. In the field of geochemistry, there are 
many processes which should be explained by means of co-precipita­
tion, for instance the anomalous behaviour of the Sr-Ca carbonate 
cystem [10], or the Ba2•, Sr2• system in calcite [11]. 

I 
! 
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In a previo~:s work ( 12] we have studied the co-precipita'::a~ 

behaviour of the La{OH)ruo2 system at roorr. tempera~ure. In u.:s 
communication we preser.t some recent results on the therrr.ociyr.ar.-.:cs 
of co-precipitation at room temperature of so~e rad1on~cl1des. Tr.e 
effect of hyllrotherrr.al aging on the co-prec1ri tatlon/co-c:sso:t.<­
tion distribution lS also studied, by using Th4 ·, La3• ar.d Ba2 • as 
radionuclide analogues. 

The investigation of the basic processes relateo to radionuclide 
co-dissolution/co-prt?c.:ipitation, req-.Jin:s well contro_:Oed ex­
perimental conditions. The study of the actual radionuclldes has 
experimental difficulties ~ue to their radioactive nature. Because 
of this, proper ar:elogues have to be chosen. One of t.he a:.~s of 
this rE<search program has been to ir.vestigate the deper . .jer.ce of 
the degree of co-precipitation/co-disso!~tion with tte ctarge c~ 

the radionuclide ion. Cor.seq..iently Th4 •. La3• a:1d aa2• l":ave be~~. 
selected as ana~ogue ions for this p~rpose. 

The co-precipitatlon and co-dissolution p~enomer.a are cor.trcl!e~ 

by ~"lny dHf erent var iaoles: terr.perat~re, the co:-.:er.trat ior. of t:.e 
IT!inor compone:1ts, the rate of the process, t~e io:-.:..c rad:us a:-.ci 
the ionic charge (3]. Tl":e two rrair. factors are t~e !or.:c cl":ar~e 

ar.d size, since the fo~ation of iso~orph::~us ~:.xed crysta:s :s 
depe:1dent on si::-.!larities in both the che~ical properties ar.d t:-.e 
size of the substltuting ions. Tl":e prooabi:ity that co-preciplta­
tion/co-dissolutior. occurs is larger .,..her. t!",ese para.~e:ers a:-e 
si:r.ilar for both the host a:1d the :r~~.cr corT:poner.t. lr. Ta:::e !-: we 
have s~~arized the io~ic rac~i for varlous ior.s of 1~:eres:. 

Table 1-1. Effective ionic radii (13] of some ions of interest. 

Ion 1 COordination number 

u6• 1.00 8 

u4• 1.14 8 

Th4• 1.19 e 
Pu4• 1.10 8 

Pu3+ 1.14 6 

Ln3• 1. 00-l. 21 6 

Ra2• 1.62 8 

sa2• 1. 56 8 
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In the case of Pu4• and Th4• an isomorphous subs~itution o: u<O• in 
the uo2 lattice is obviously possible since both charge and si~e 

are very &imilar. 

For pu3• and the lantr.anide ions (here syrr.bolized by Lr. 3 •) t:-:e 
ionic radii are in a range of values wr.ich indicates the pos· 
sibility of isomorphous subst.itution of u4 •, altho":Jgh this w::J:.::d 
imply a readjustment of the charg~. We fou~d it would be interes­
ting to test to which extent a larger ion like Ba 2• (analog:.:e to 
Ra2•), wou:d behave in the co-prec~pltation system. 

Thermodynamics of Radionuclide Co-precipitation 

The equilibriwr. distribution of the components A, B of a so.1c 
solution between the solid and the aqueous phases can be described 
in two different ways. 

If eq-.;ilibr!u.-:: is attained between the bulk of the so~:d so:..:::.::Jn 
•u;d the aq~.:eous pr.ase the syste:r. fo~lows the Be!:'the:o:-se:-~.s: 

ho~ogeneous distribution law (1.;). !his car. be expressed as: 

When equilibriu.-r. is only reached bet weer. the surface of the so. :c 
and tt.e aq:.:ccus sol~.:tior., t.t:e d:str~b..:t:or. of t!'Je co:--pc::e:-.:~ 

between the solid and the aq":Jeows phases follows the Doer::e:-· 
Hoskins logaritr~ic law (15]. This is fo:rm":Jlated as: 

log ---- = k log ( 2) 

The 'co-precipitation eq11ilibna ln the system La(Ill)/U(IV). 112) 
and Ba( II)/U( IV) have been studied under well controlled co!"ldi­
t ions at 25°C. The exper imenta 1 details have been prev io:.:sl y 
descr i.oed (12) . 

From these experimental data we conclude that the dist!:'ibutior. of 
the different ions involved between the aqueou:. phase and the 
solid solution follows the logarit~~ic law. From these data it is 
possible to calculate conditlonal solubility product~£ (12} of 
La(OH)3(s) and Ba(OH) 2 (s), in the presence of uo2 (s). Fror"" a few 
data obtained (16), in the Pu(Ill)/U(IV) sys:~m. we hav~ a:so 
estimated a conditio~al solubility prod.;ct for Pu(OH) 3(s) in t~e 

freser:.:e of uo2< s). In Table 1·2 we make a conparison be~~o·eer: 
these conditional solubility prodJcts anC: the values for the 
individJal phases. 
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Table I-2. 

Mn+ 

Pu 3" 

La3• 

Ba2 • 

5 

A comparison bet~een conditional (K• ) and individual 
solubility products for the equilib~~a: 

Mn+ + n E2o ..>. M(OH)n(s) + n H+ 
~ 

log Jt• log ltso so 

- 2.4 -19.3 

-12.5 -20.5 

- 9.1 -24.4 

From these data it is possible to conclude that: 

Tile solubility of the mi. !"lor co:::por.ent s is stror.:;: y rec..:cec !:;j' 

the presence of uo2 (s). 

At low te:-perat'..lre the co-preclp:.tat1on eq'.Jilibriurr obe~·s t::e 
Doerner-Hosk.:.ns dl~trib'.Jtlon law. Thls indica:es tl':a: eq.:­
libr:~ is or.ly attained be:&een tr.e surface o! the so::.c a:-.:: 
the aq..:eous phase. 

The Effect cf !ging on Co-precipitation 

Because of tl':e long-ter~ pred!ct1o::s necessary for tl':e sa~e:y e::~ 

·per!or~·a:-.ce assessr:-e:-:t of n-.;c lear waste repos: tor:.es, i: :.s 
i:::portan':. to cor.s•der the ef!ect o! aging of tne co-prec:.p::. ta:e o:. 
the dis:r1b·..::1or. eq-..:Llbr:a. 

I!"' order to St;.:dy this, a solu-:.ior. :.n:.tia:.ly con~al.~i.ng 

!U(VI)] a 1.00 10-2 mol dr.1- 3 

1 :-r.( :vJ l l.O::l 1c-4 mol dro- 3 
' 

I La (II I) ] .. 5.00 10-5 mol dr..-3 

[ Ba< I1 J I .. 5.00 10-5 mel dro-3 

in 0.5 mol dm- 3 NaClo4 was reduced with H2/Pd(g) at pH • 3 by 
using the same experimental approach as previously des:ribed (12]. 
A black precipitate was formed which wu characterized by X-ray 
powder diffraction (XPD), (see Figure I-1). The broad lines ob­
served, showed the presence of a microcry:o;tallint> solid. Tlus 
solid was kept in contact with the mother solution for six months, 
at T • 110 to l20°C under N2 (g) atmosphere. After this time the 
solution and the solid phase ,..,~re anal yzcd. In Table I- 3 W\! S'.lm­

mar ize the percentagt>s of the different col":por.ents both in t!'le 
aqueous and the solid phases. 
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Fiqure I -1. XfD pat tern of the solid used in our experiments 
where thP. theoretical assiqned distances (19), are in 
( J.) : 

a: 3.234 (Th02) 
b: 3.157 (U,Th)02 
c: 2.73 (U,Th}02 
d: 1.98 (Th02 ) 
e: 1.93 (U02) 
f: 1.&5 (U,Th}o2 

Table I-3. Relati•1e composition of the aqueous phat:e and the co­
precipitate after aginq. 

Metal ion 

U( IV) 
Th ( :v) 
La( I::) 
Ba(I:) 

\ in solution 

98.0 
l.C 
0.5 
0.5 

\ in solid 

'P.5 
1.7 
0.4 
0.4 

The results in Table I-3, i~dicate a co~gr~e~t co-precip~:a::=~ o! 
La(II:) a.1d Ba(!l) ar:d an er:rich.-,ent of Th(:V) in the so::d. 

Xlnetics of Co-dissolution 

A portion of this solid phase 01as put in contact with a 0. 5 mol 
dm-3 NaCl04 solution at pH s 4.5 under N2(g) atmosphere. The time 
dependence and the equilibrium distrlbu~ion between the solid and 
the aqueous phase were studied. Several sa:nples were taken at 
different times, and 01e ana: yzed tl":e urar: iu.r:1, lanthar.:.l:r., t!lor i~~ 
and bar:u.~ contents ir. the init1al solid an~ in the liquld sa~p:e~ 
by induced coupled p~asma spec~rophotorr.etry, ( IC). These ana:ysi!: 
were performed by using a Perkin Elmer !CF/5500 spectrop~o:ome:er. 
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P~qure I-2a. Values of u1anium concentration vs t.iJDe. 

The results are s;J..~arized in Fig-..:re 1-2. The plot of [C(:V)j :::!· 
contact time, (Fig;Jre l-2a) shows tha~ steady state conc~r.tra: :.c~,s 
are reach~d a!ter 50 hours. Tne average steady state cor.cer.tra­
tio~s of U( !V), is of the same r.-:ac;::i tude "s t:1e expected [.; ( :v) J 
in equilibrium with a~orphous uc2 (s) (3.0 1C-~ mo: ~-3), [:7). 

The plots o! the norrr.a: ized concer.: rat ~ons of ~he r.-::.no::- co~p:::~.er.: 5 

with respect to the ura::iu.:r: cor.cer.~ratio:-: in so:u~ic-: ~· :::-e 
(Figure 1-2b-c-d), indica~e that the release of these rr: r.c:- cc:-­
poner.ts from the so:ic matri.x is tota! ly cor.':. rolled by the u:-a:-.: ~­
dissolution, e.g., congruent release. Thls ber.a·.r:our is la:-s;e~y 

time independent (see Flc;ure l-2b-d). Finally. a ca:c.:la·~:o:J o: 
the distribution factors D accord inc; to the Be:-the:c.,t-!'e:-:-:s: 
distribution law (Eq. 1): 

l M I ( aq) 
G D ----------- ( 3) 

(U(IV)J(s) {t.:(lVlJ(aq) 

9ives DTh4+ • DL8 3• • 1, while DBa2• • 2. This strongly suggests 
that hydrothermal aging of the co-precipitate has caused the 
initlal logarithmic distribution to shift to a norr.1al type of 
distribution. 
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Conclusions 

!~ this work we have a::e~p:ed a ge~eral s:udy o! th~ so:~=:l!ty 
behavio~r o! the m!nor co~po~ents of the nuc~e~r ~aste ~a:r:x i~ 

relation to the major comp~ne~t uo2 . 

As we ~ave shown in this and previous ~tud;es [l2,l6], the so:~b!­
lity of the minor components cannot be only predicted on basis of 
the ind1vid~al solid phases. Co-precipltatior. occ~rs, ar.d a: lo•: 
temperatures the distribution of the co~ponents between the sol1d 
and the aque;:,•.-s phases follows the logarithmic distrib-..::ion la~. 

Hydrothermal aging causes the co-precipitation syste:r: to shift 
from the logarithmic ( Doerner-Hosldns) to a normal (Berthelot­
Nernst) distribution. This is in agreement with previous observa­
tions in other co-precipitation systems (3]. 

At the same time, we have also sho~n that the dissolution of the 
minor components from a U(Th,La,Ba)o2 solid solution is ~lne:ical­
ly and thermodynamically controlled by the behaviour of the rr.ajor 
component, uranium dioxide. 

In this work we have only studied the co-pre~ipitation/co-dissolu­
tion systems in connection with a near field situation, w~ere 

uranium ~an be the major component in case of oxidat1on a~d 

container failure. In the far field, the co-precipitation/co­
dissolution systems have to be related to the major geoche::-.ica: 
processes occurring in granitic groundwaters. Possible systems 
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affecting the "individual solub.ility" of radion>lclides are the 
precipitation/dissolution of calcite, Fe(III)-hydrox:de, ~nc2 a~c 

feldspars n•odification ( 18]. Future work lliill be foc'.lsed to an 
understanding of these processes. 
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PART II: RADIONUCLIDE CO-PRECIPITATION IN THE FAR FIELD 

Introduction 

As we have already pointed out in the previous sectio!"l, the co­
precipitation/co-dissolutlon behaviour of the radior:uc::.ides in t~e 
far-field will be related to the major hydrogeoche~ical char.ges '~ 
the grounciwa:er. 

Accord::.nc; to Eriksson [lj and Stur:-.:'!" a:1d P.:orga!"l [2], the J'!',a~or 

geoc.hem:cal cha:1ges occ~rring as 10a:er perco:a:es fro~. the sc.:r!ace 
towards deep areas can be schema::zed by fig~re r:-1. 

~ ,.. r • .. ~. 

~ ... .J'" •• ~ • 

v-..,~,.~: -.e -o:. .. Hi1 • ,,.-:..c: ... cn. o' 
:-:-.:.- C"' : 1·-.~o~s. 'co-.:1Fo} 'o~-,.~; 

l .. r- c ,1"'1': ... • -:: ~ ~,. H , :.1 t 4! t-d sal t ~ 
_'r~€-"''H ... .;.a~r':'nr.; 
:.::.:...-"" ... ' ':•·( .. ar-.~ ,..f"!ta'S.E' 
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It is now well established [3) that ground\<later flows preferen­
tially through fissures. It is logical to expect that th~ majo:­
chemical processes will occur in these fissures and at the inter­
face with t~e fracture filling minerals. Independently of the flo~ 
pattern, the geochemical changes will be related to the weather1ng 
of ~he bedrock. Hence, it is neces~ary to identify which are the 
possible fracture filling minerals and weather inc; products in 
granitic bedrock and the geochemical processes related with them. 
Muller [4] has made a compilation of the different types of 
minerals present in granite. In Table Il-l, we show the fracture­
filling and secondary minerals for granite. 

During the SKB site charactl!!rization program, investigations of 
low temperature fracturl!! fillings havli! been performed [Sa-b). 
Calcite, iron-oxides and clay minerals have beli!n found to cot·­
respond to the latest geological I!!Vent. It has also bli!en observed 
that calcite is found in areas of recharge and discharge [3). Thli! 
dissolution-precipitation reactions of calcite and iron-oxides are 
known to proceed fast, even at low temperatures. The mean life of 
a calcite surface (monolayer) in seawater has been experimentally 
demonstrated to be one day [6,7]. Conseque~tly, calcite and iron­
oxidli!s mobilization will play an important role in the g~oche~ica: 
cycle of radionuclides in the granite environment. There is a 
great dti!al of information about co-precip~tation liystems related 
to calcite dissolution-precipitation. M;.;ch less has bee:-: do:1e 
respect to iron hydrox1des. In the case o! goethite and limonite 
nrJch emphasis has been put in studying the adsorptbn prope:-ties 
of different ions on the iron hydroxide surface. 

J. Morse [8) has done an excE:lent overvie..,. on the surface che­
mistry of calcium carbonate rr.i:-:e:-als. Acco:-c.:.ng to his wo:-k and 
the experimt>ntal findings of different investigators it is pos­
sible to find that there is a related sequence from adsorptio:-: to 
co-precipitation through surface precipltation. Adsorption and 
surface precipitation require the existence of a contiguous solid 
phase. However, in most of the cases the me-:han1sms of these 
three, prc~esses 're closli!ly related. 

Hence, in our literature survey we have devoted our attention not 
only to radionuclide co-precipitation with calcite and iron 
hydroxide, but also to the investigations of radionuclide adsorp­
tion on these solid phases where emphasis has been put in the 
surface coordination aspects. 

Radionucfide Co-precipitation with C.lcite 

As pointed out by Pingitorli! [9} the incorporation of trace ele­
ml!!nts in calcite has an extensive impact in several areas of 
environmli!ntal chemist. 1 and geochemistry. The exp~rimental infor­
mation collected in these areas can ~I!! summarized as follows. 

----~· 

\ 
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'!.Uil• 11-1. *--ls f__. ia sr-!t.ea. 

..u.nJ ~ Species 1'Jpe Specific r-La 

SuJpbi ... Pyrite l'ract. fill. Fes2 

Pyrrhotite l'ract. fill. l'eS( pyrr), l'e7S8 

Qaicles Pyrolusite Second. •in. Hno2 

.,.._idM Goethite Second. •in. FeOOH 

Diaspore Second. 11in. AlOOH 

llohelll i te Second. 11in. AlOOH 

Gibtsite Second. 11in. Al(OH) 3 

Limonite Second. min. l'eOOH nH2o 
FrliC t. fi 11. 

Bali ... nuorite Second. min. Wz 
·-

carllonat.ea Calcite l'ract. fill. eaco3 

Sulpbllt.M Alunite Second. min. KA1 3(S04 )2(0H) 6 

Jarosite Second. min. KFe3(S04)2(0H)b 

Anhydrite Second. 11in. ease4 

Gypsum Second. 11in. ease4 2112o 
l'ract. fi 11. 

Soroa i J icatu Zo15ite l'ract. fill. CazA1 3(Si04)30H 

Clinotoisite Fract. fi 11. ea2Al 3(Si04)30H 

Epidote Second. min. ea21'eA1 2Csio4)30H 
l'ract. fill. 

Piemontite FrliCt. fill. ea2CAl,Mn,Fe) 3(Si04)30H 

l'llylla.ilicatM Kaolinite Second. •in. AlzSi 2o5(0H) 4 
Fract. fill. 

Smectite Second. •in. CaAll"SizzObo<OH>12 

Clinochlore Second. ain. Hc"oAllbSizlo080(0H)blo 
Fract. fi 11. 

Illite Second. llin. k2Al 10si 14o40 COHl 80 

Sericite Second. 11in. KAlz(AlSi 3o10 )(0H,FJ 2 
I 

I 
'beta.i U.cat.ea 0\alcedony Fract. fill. SiOz{chal) . 

Opal FrliCt. fill. SiOz '.0.5H20(am) 
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Dou~led charged ions with ionic radii leso; u.an calclurr (e.g. 
Mn2•, zn2•, Fe2•, ca2• and Co2•) can be extenslvely lncorporated 
into calcite precipitat~d at groundwater conditions. Spectroscopic 
techniques, X-Ray dlffraction and EPR measurements, have demonst­
rated that these trace cations substitute ca2• in the lattice. Th~ 
calcium ion may occur in the caco3 lattice as hexacoordinateci 
(calclte), or ninefold-coordinated (aragonite). Cations larger 
than ca2•, like sr2•, Ba2•, Pb2• and Ra2• substitute also ca2• i~ 
the rombohedral calcite, even if t.heir p._.re carbonates, like 
strontianite or barite, bild up orthoromboedral structures. J. 
great number of studies have been carried out on the adsorption/ 
co-precipitation of Mg2+ with calcite (10,11,12,13). Bancroft et 
al., (10) studied the uptake of Ba2• by calcite. Also the sorption 
of Mn2• on calcite has been investigated by several authors 
[11,12.13]. McBride carried out an spectruscopic investigatlon o~ 
the Mn2• surface concentt·at ions by ESR ~13 1. He observed the 
formation of a new l'.nco3 phase at high Mn • surface concentra­
tions. Also the uptake of Cu(Il) by calcite has been investigated 
[ 141. In this case the surface precipitated phase seer.; to cor­
respor:d to malachite cu2( OH) 2co3 . The interact ion of Cd ( 11) ..,. i ~!". 
calcite surfaces has also been investigated by ~cBride [:5]. T~e 

uptake patterns are very similar to those of Mn2•. Korn:cKer et 
al. I 161 studied the adsorption of co2 .. on carbonate r:ir:era~ 
surfaces, no evidence for the fo~a~ion of a differentlated CoCO~ 
phase was observed. Finally, fo:orse and co~o~orkers have dedicated 
much effort to the study o! the ir:terac~ !.on of actinides ...-: tr. 
calcite sutfaces. A:n(lll) [17]. 7h:IV) llB]. NpO~ [191, P;,jo; 12:] 
and uo~· [211 adsorb sign:!icar:t:y or: ca:cite. Nevertheless, there 
ls a co:npetlt!or. from car.cor.ate cor".plexa:::on 1n the aqueous phase, 
partic~larly for U(Vl). Fror" all these data a genera: mecha~~stic 
pattern car. be found for the transition fro::-. adsorption to co­
precip;tatio~. ~~is is sche~~tized in F:g;.lre ::•2. 

Site adsorp. 

Mxca1_xco3(monolayer) 

+ surface prec:pitation 

co2· 
3 

+ 3-dim. lattice 

+t homogeneous dist. equil. 

Fiqure II-2. A tentative -chanism for ion-adsorplion/co-preci­
pit.ation transi lion in calcite. 

/ 
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Figure II-3. Schematic time-dependence of radionuclide uptake by 
calcite. ( 1) Langmuir type adsorption = surf ace t.om­
plexation; ( 2) Freundlich type adsorption • surf ace 
precipitation; (3) Co-Precipitation; (4) Equilibrium. 

According to this model the kinetics o! rad.:.on·.;clide t.:ptai!.e by 
calcite could be visua!ized as in Fig~re :I-3. 

Radionuclide Co-precipitation with Iron-Oxides 

There is practically no ir.!ormation availaole about co-precip:ta­
tion of trace metals "''lth iron-l':ydroxides/oxides. Much experlmer.­
ta 1 and theoretical work has been devoted to the st-.•dy of t~e 

metal adsorption on goethite-hematite surfaces. Nevertheless, 
Benjamin and Leckie [22], studied in a very comprehensive ~ork t~e 
adsorption ot trace metals (Cd, Cu. Zn a:.d Pb) on a:ncrpho~s 

goethite. They observed that at low adsor;>t ion der.s it y the data 
could be described by a Langmuir isotherm. At larger adsorption 
density, the metal uptake fitted to a Freundlich behaviour (see 
Figure II-3). During their kineLlC experiments they also observed 
that the initial adsorption was fast, followed by a much slower 
uptake. This last step was related by the authors to a possible 
solid-state diffusion. This behaviour is perfectly in concordance 
with the previously proposed kinetic model for trace metal uptake 
by calcite. 

The adsorption of actinides on different ferric oxy/hydroxides has 
been extensively studied. There is quantitative infor:nation !or 
uo~• [23], Pu4• and ;>uo; [24] and Np(V) [25]. In all these st\;iies 

/ 

/ 
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the triple layer model (TLM) [26,27,28] for surface site bo~ding 
has been applied and intrinsic surface binding cor.star.ts for 
dlfferent actinlde specie• have been obtained. 

Conclusions 

This study on the large literature available on trace metal upta~e 
by calcite and iron indicates that: 

Trace metal and radionuclide uptake by naturally occurring 
minerals is extensive. The solubility of trace metals in 
r.atural waters cannot be only mvdelled from thea ir.d~v.:.d-.;a: 

thermodynamic properties. Also the redox properties of radior.u­
clides are drastical1y affected by their interaction with 
naturally occurring solid sur!aces [20]. 

There is a sequential transition, ADSORPTION ~ SURFACE ?~EC:?:­
TATION ~ CO-PRECIPI'I'AT:ON. This has been demonstrated by 
spectroscopic met~ods in the case of calcite and adsorpt :c:-. 
data indicate a similar behaviour for ircn hydro/oxides. 

'!'here is a need for theororetical and experimental develop!':'.er.<; 
in order to include and quantify the water-particle interface 
processes in the general radionuclide speciation model. Empir:­
cal scavenging parameters like Kd are of very limited validity. 
Intrinsic surface bir.dir.g constants are by de!inition no~­

conditional and consequently the only ones applicable to the 
modelling of radionuclide mobility in grour.d~ater enviro~~ents. 
This approach has been successful:i.y tested by Ba:.istrien., 
M·..lrray and coworkers [ 29] in order to model trace me-:.al spec.:.a­
tion in sea water. 
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